# Spherical Codes for Gaussian Quantization

Jon Hamkins Jet Propulsion Laboratory May 28, 1997

Joint work with: Ken Zeger, UCSD

### **Outline**

- 1. Review of vector quantization (VQ) concepts
- 2. Vector quantization of a memoryless Gaussian source
  - A. Properties of Gaussian vectors
  - B. Shape-gain quantization using wrapped spherical codes
  - C. Extensions

### Main contribution:

Better low-complexity vector quantizers for memoryless Gaussian sources.

## Quantization

#### A communications system:



#### A simplified source coding model:



#### Ways to view a quantizer:

- 1. Analog to digital conversion
- 2. Signal/data compression
- 3. Function  $Q: \mathbb{R} \to \mathbb{R}$

# **Quantizer Design**

Try to minimize distortion:

$$D = E||X - Q(X)||^2$$

Example: uniform source



Lloyd-Max algorithm repeats the following:

- 1. Nearest neighbor (fix outputs, move cell boundaries)
- 2. Centroid condition (move outputs, fix cell boundaries)

This will converge to locally optimal quantizer.



# **Vector Quantization**

Group source samples into a vector, and quantize the whole vector.

Example: i.i.d. Uniform source, formed into 2D vectors



# **Quantization Coefficient**

The quantization coefficient: average MSE per dimension for high rate quantization of a uniform source (scaled so as to be a dimensionless quantity).



Lattice VQ's are good for uniform sources.

| Dimension            | Lattice        | Quantization coefficient                         |  |  |  |
|----------------------|----------------|--------------------------------------------------|--|--|--|
| k                    | $\mathbb{Z}^k$ | $\frac{1}{12} \approx 0.0833$                    |  |  |  |
| 2                    | $A_2$          | $\frac{\frac{12}{5}}{36\sqrt{3}} \approx 0.0802$ |  |  |  |
| 3                    | $A_3$          | 0.0787                                           |  |  |  |
| 3                    | $A_3^*$        | 0.0785                                           |  |  |  |
| 24                   | $\Lambda_{24}$ | 0.0658                                           |  |  |  |
| $\rightarrow \infty$ |                | optimal: $\frac{1}{2\pi e} \approx 0.0586$       |  |  |  |

Note: maximizing packing density ≠ minimizing MSE

| Dimension | Best known        | Densest known  |  |  |
|-----------|-------------------|----------------|--|--|
|           | lattice quantizer | lattice        |  |  |
| 2         | $A_2^*$           | $A_2$          |  |  |
| 3         | $A_3^*$           | $A_3$          |  |  |
| 4         | $D_4^*$           | $D_4$          |  |  |
| 5         | $D_5^*$           | $D_5$          |  |  |
| 6         | $E_6^*$           | $E_6$          |  |  |
| 7         | $E_7^*$           | $E_7$          |  |  |
| 8         | $E_8^*$           | $E_8$          |  |  |
| 24        | $\Lambda_{24}^*$  | $\Lambda_{24}$ |  |  |

### Implications of Shannon's Theorem

#### **Good News:**

Shannon's source coding theorem w.r.t. a fidelity criterion says that all k-dimensional quantizers  $Q(\cdot)$  satisfy

$$\frac{1}{k}E||X - Q(X)||^2 \ge D(R)$$

and there is a sequence of quantizers such that

$$\frac{1}{k}E||X - Q(X)||^2 \to D(R)$$

as  $k \to \infty$ , where R is the rate of the quantizer  $(\frac{1}{k} \log_2 M)$ , and where D(R) is the distortion-rate function.

#### **Bad News:**

Computational complexity of encoding is

$$M=2^{Rk}$$

i.e., exponential in both rate and dimension.

# A Memoryless Gaussian Source

Let  $X = (X_1, \dots, X_k)$ , where  $X_i \sim N(0, \sigma^2)$ .

In two dimensions (k = 2,  $\sigma^2 = 1$ ):







## **Properties of a Memoryless Gaussian Source**

If  $X = (x_1, \dots, x_k)$ ,  $x_i \sim N(0, \sigma^2)$ , and if  $Y = (y_1, \dots, y_k)$ , then

$$f_X(Y) = \prod_{i=1}^k \frac{\exp\left(\frac{-y_i^2}{2\sigma^2}\right)}{\sqrt{2\pi\sigma^2}} = \frac{\exp\left(\frac{-\|Y\|^2}{2\sigma^2}\right)}{(2\pi\sigma^2)^{k/2}}.$$

**Lemma:** The pdf of g = ||X|| is

$$f_g(r) = \frac{2r^{k-1} \exp\left(\frac{-r^2}{2\sigma^2}\right)}{\Gamma(k/2)(2\sigma^2)^{k/2}}$$

Proof:

$$f_g(r) = \int_{\|Y\|=r} f_X(Y) dY = \frac{\exp\left(\frac{-r^2}{2\sigma^2}\right)}{(2\pi\sigma^2)^{k/2}} \cdot \underbrace{\int_{\|Y\|=r} dY}_{S_k r^{k-1}}.$$



# Variance of ||X||

[ Recall,  $X = (X_1, \dots, X_k)$ , where  $X_i \sim N(0, \sigma^2)$ .]

$$E\|X\| = \frac{\sqrt{2\pi\sigma^2}}{\beta\left(\frac{k}{2}, \frac{1}{2}\right)} \approx \sigma\sqrt{k - (1/2)}$$

$$E\|X\|^2 = k\sigma^2$$

$$\text{var}\|X\| = k\sigma^2 - \frac{2\pi\sigma^2}{\beta^2\left(\frac{k}{2}, \frac{1}{2}\right)}$$





# **Motivation for Spherical Vector Quantization**



Sakrison showed (also stated as Eq. (6.6))

$$D = \frac{1}{k}E\|X - Q(X)\|^2$$

$$= \frac{1}{k}E\|X_p - Q(X)\|^2 + \frac{1}{k}\underbrace{E\|X - X_p\|^2}_{\text{var}\|X\|}$$

$$= D_s + D_g$$

$$\approx D_s, \text{ for large } k$$

# **Spherical Vector Quantization**

### Previous work:

- Geometric development (Sakrison, '68)
- Polar Quantizers (Bucklew & Gallagher, '79, Wilson, '80)
- Spherical coordinates quant. (Swaszek & Thomas, '83)
- SVQ for speech coding (Adoul, Lamblin, & Leguyader, '84)
- Asymptotic Polar Quantizers (Swaszek & Wu, '86)
- Non-Gaussian distributions (Fischer, '86, '89)

# **Wrapped Spherical Vector Quantizer**



Gain codebook: scalar quantizer optimized by Lloyd-Max algorithm.

Shape codebook: wrapped spherical code, without buffer regions



# **Definition of spherical code**

**Definition:** A k-dimensional *spherical code* is a set of points which lie on the k-dimensional unit sphere.

## Examples:





3 dimensions

In *k* dimensions:

$$C \subset \Omega_k \equiv \{(x_1,\ldots,x_k) : \sum x_i^2 = 1\}.$$

# Wrapped spherical code construction

Intuition: use Yaglom-type mapping, but with less distortion.

Yaglom's mapping: Project the best (k-1)-dimensional packing onto  $\Omega_k$ .





# Partition $\Omega_k$ into annuli:



# Wrapped spherical code construction

Within each annulus, introduce only small distortion:



**Theorem:** The quantization coefficient of a wrapped spherical code is within  $O(\sqrt{d})$  of the quantization coefficient of the underlying packing used to construct it.

# Example of wrapped spherical code



# **Shape-Gain Rate Allocation**

$$R = \frac{1}{k} \log_2 [(\text{Gain CB size}) \times (\text{Shape CB size})]$$
 $= \frac{1}{k} \log_2 (\text{Gain CB size}) + \frac{1}{k} \log_2 (\text{Shape CB size})$ 
 $= R_g + R_s$ 

SQNR as a function of gain codebook size:



Optimize rate allocation by maximizing SQNR using numerical methods.

# **Index Assignment**



Method to determine index, given  $\hat{g}\hat{S}$ :

1. Off-line, compute the number of codepoints in each annulus. Let  $P_a$  denote the number of codepoints of the ath annulus, and P be the total size of



the shape codebook.

- 2. Map  $\hat{S}$  to lattice point  $q \in \mathbb{R}^{k-1}$ , using function from wrapped spherical code definition.
- 3. Identify index of q using lattice indexing algorithm. Suppose it has the lth lowest index among points in the annulus.
- 4. Let  $\hat{g}$  be the *i*th lowest gain output level.
- 5. The index is  $iP + \left(\sum_{a=0}^{j-1} P_a\right) + l$ .

## **Operation of Quantizer**

**Step 1.** Given k source samples, form vector  $X \in \mathbb{R}^k$ .

**Step 2.** Compute g = ||X|| and S = X/g.

**Step 3.** Use gain codebook to quantize g as  $\hat{g}$ .

**Step 4.** Map S to  $f(S) \in \mathbb{R}^{k-1}$ .

**Step 5.** Find nearest neighbor  $\hat{f}(S)$  to f(S), using a nearest neighbor algorithm for  $\Lambda$ .

**Step 6.** Compute  $f^{-1}(\hat{f}(S))$  to identify quantized shape  $\hat{S}$ .

**Step 7.** Compute the index of  $\hat{g}\hat{S}$ .

**Step 8.** Transmit index of  $\hat{g}\hat{S}$  across (noiseless) channel.

**Step 9.** Decode index to obtain  $\hat{g}\hat{S}$ 

Encoder

Channel

Decoder

Complexity:  $7 + \frac{R+L+32}{k}$  arithmetic steps per sample, where

R = Rate

k = Dimension

L = Lattice encoding complexity

For Leech lattice, L = 2955, and the complexity is  $127 + \frac{R}{25}$ .

# **Performance Analysis**



$$D = \frac{1}{k}E\|X - \hat{g}\hat{S}\|^{2}$$

$$= D_{g} + D_{s}$$

$$= \frac{1}{k}E(g - \hat{g})^{2} + \frac{1}{k}E\hat{g}^{2}E\|S - \hat{S}\|^{2}$$

## **Performance Analysis**

In order to optimize rate allocation,  $D = D_g + D_s$  must be estimated under differing shape and gain codebook sizes.

# Evaluation of $D_g$

$$D_g = \frac{1}{k}E(g - \hat{g})^2$$

Evaluate using  $f_g(r)$  and table of  $\hat{g}$  outputs, which are known explicitly.

Compute the expectation numerically, if necessary.

## Evaluation of $D_S$

$$D_{s} = \frac{1}{k} \underbrace{E\hat{g}^{2}}_{1} \underbrace{E\|S - \hat{S}\|^{2}}_{2}$$

1. 
$$E\hat{g}^2 = Eg^2 - E(g - \hat{g})^2 \approx Eg^2$$

2. 
$$E\|S-\hat{S}\|^2 \approx \left( \begin{array}{l} \text{MSE of underlying lattice, used as } (k-1) - \\ \text{dimensional quantizer for Gaussian source.} \end{array} \right)$$

# **Simulations**

Comparison of various quantization schemes for a memoryless Gaussian source. Values are listed as SQNR in decibels.

| Method               | Rate |       |       |       |       |       |       |  |
|----------------------|------|-------|-------|-------|-------|-------|-------|--|
|                      | 1    | 2     | 3     | 4     | 5     | 6     | 7     |  |
| D(R)                 | 6.02 | 12.04 | 18.06 | 24.08 | 30.10 | 36.12 | 42.14 |  |
| $W\Lambda_{24}$ –SVQ | 2.44 | 11.02 | 17.36 | 23.33 | 29.29 | 35.27 | 41.33 |  |
| GLA (kR=8)           |      | 10.65 |       | 20.98 |       |       |       |  |
| Lloyd-Max S-         | 4.40 | 9.30  | 14.62 | 20.22 | 26.02 | 31.89 | 37.81 |  |
| calar                |      |       |       |       |       |       |       |  |
| Uniform scalar       | 4.40 | 9.25  | 14.27 | 19.38 | 24.57 | 29.83 | 35.13 |  |
| Entropy coded        | 4.64 | 10.55 | 16.56 | 22.55 | 28.57 | 34.59 | 40.61 |  |
| scalar               |      |       |       |       |       |       |       |  |
| UPQ                  | 4.40 | 9.63  |       |       |       |       |       |  |
| Fischer SVQ          | 4.49 | 10.51 | 16.53 | 22.55 | 28.57 | 34.59 | 40.61 |  |
| (estimated)          |      |       |       |       |       |       |       |  |
| TCQ                  | 5.56 | 11.04 | 16.64 |       |       |       |       |  |
| 256 state            |      |       |       |       |       |       |       |  |
| Wilson 128 s-        | 5.47 | 10.87 | 16.78 |       |       |       |       |  |
| tate                 |      |       |       |       |       |       |       |  |
| TB-SVQ (4 s-         | 5.14 | 11.11 | 16.77 |       |       |       |       |  |
| tate)                |      |       |       |       |       |       |       |  |
| TB-SVQ (64           | 5.49 | 11.28 | 17.05 |       |       |       |       |  |
| dim.,16 state)       |      |       |       |       |       |       |       |  |





# **Improvements and Extensions**

Vector quantization of the gain:



# **Improvements and Extensions**

# Shape classified quantization



#### **Universal Quantization**



Use intuition of central limit theorem.

 $m \times m$  Hadamard matrix contains  $\pm 1$  and satisfies  $H_m H_m^T = I$ .

Example: 
$$H_2 = \begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}$$

Let 
$$e = \hat{Y} - Y$$
.

$$\hat{X} = H_m^T \hat{Y} 
= H_m^T (Y+e) 
= H_m^T (H_m X+e) 
= H_m^T H_m X + H_m^T e 
= X + H_m^T e.$$

The end-to-end distortion of this system is

$$E[\|\hat{X} - X\|^{2}] = E[(\hat{X} - X)^{T}(\hat{X} - X)]$$

$$= E[(H_{m}^{T} e)^{T}(H_{m}^{T} e)]$$

$$= E[e^{T} H_{m} H_{m}^{T} e]$$

$$= E[e^{T} e]$$

$$= E[(\hat{Y} - Y)^{T}(\hat{Y} - Y)]$$

$$= E[\|\hat{Y} - Y\|^{2}]$$

Conclusion: we can transform distribution of X to a Gaussian distribution and use the usual wrapped SVQ without penalty.

#### **Conclusions**

- Performance and complexity of quantizers for memoriless Gaussian sources is equivalent to the performance and complexity of quantizers for the uniform source.
- Any future improvements to uniform source quantizers yield analogous improvements for Gaussian source quantizers.

#### Future work:

- Noisy channel vector quantization
- Trellis encoded spherical vector quantizers

# **Interesting Facts about Spheres**

In 1885, L. Schläfli published an article containing a formula for the volume of the k-dimensional unit sphere  $\Omega_k$ :

$$V_k = rac{\pi^{k/2}}{\Gamma\left(rac{k+2}{2}
ight)} = \left\{egin{array}{c} rac{\pi^{k/2}}{(k/2)!} & ext{if $k$ even} \ rac{2^k \pi^{(k-1)/2}((k-1)/2)!}{k!} & ext{if $k$ is odd} \end{array}
ight.$$

The surface area is given by

$$A_k = kV_k$$

Thus,

$$(V_2, V_3, V_4, \dots) = (\pi, \frac{4\pi}{3}, \frac{\pi^2}{2}, \dots) \approx (3.1, 4.2, 4.9, 5.3, \dots)$$

and

$$(A_2, A_3, A_4, \dots) = (2\pi, 4\pi, 2\pi^2, \dots) \approx (6.3, 12.6, 19.7, 26.3, \dots)$$

#### **Amazing fact:**

 $V_k$  and  $A_k$  each approach 0 as  $k \to 0$ .

 $V_k$  is maximum in dimension 5;  $A_k$  is maximum in dimension 7.



### **Interesting Facts about Spheres**

A theorem of Archimedes\* says that the surface area of a sphere is equal to the cylinder that contains it. In fact, a sphere 'slice' of thickness t has surface area  $2\pi t$ , regardless of where the slice is made.



This implies the following:

Claim: Let P = (X, Y, Z) be a random vector uniformly distributed on the unit-radius sphere. Then the distribution of X is uniform on [-1,1].

<sup>\*</sup> He was so proud of the theorem, he had a figure of it inscribed on his tombstone. The tombstone was lost but was rediscovered this century— they recognized the figure!

### **Interesting Facts about Spheres**

The percentage of the surface area of Earth above  $45^{\circ}$  N is about 15% of the total surface area.



A similar 'polar cap' on a higher-dimensional sphere consists of points on the sphere whose last coordinate is at least  $1/\sqrt{2}$  or higher.

The fraction of surface area such a polar cap occupies approaches 0 as the dimension tends to infinity. In dimension 25, it occupies less than two thousandths of a percent of the total surface area.

fraction = 
$$\frac{1}{S_k} \int_0^{\pi/4} S_{k-1} \sin^{k-2} \theta \, d\theta$$